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Different types of peroxisomes in human duodenal
epithelium

F Roels, M Espeel, M Pauwels, D De Craemer, H J A Egberts, P van der Spek

Abstract
Peroxisomes are ubiquitous organelies con-
taining enzyme sequences for ,B oxidation of
fatty acids, synthesis of bile acids, and ether
phospholipids. In the inherited peroxisomal
diseases one or more enzymes are deficient in
hepatic, renal, and fibroblast peroxisomes. We
have examined peroxisomes by light and
electron microscopy in 29 duodenal biopsy
specimens (21 with normal mucosa) after stain-
ing for catalase activity, a marker enzyme.
Peroxisomes were most numerous in the
apices of the nucleus and at the villus base.
Two types were distinguished: rounded to oval
forms with a median lesser diameter of 0*23-
0.31 im, and tubular, vermiform organelles
0.1 [im thick and up to 3 im long. Both types
coexist in most patients. Tilting of sections
and examination of semithin sections at 120 kV
did not show connections between individual
organelles. By morphometry, volume density
was at least 0.45-0.62% of cellular volume,
compared to 1*05% in human liver. In contrast,
in four out of five individuals surface density of
the peroxisomal membrane was 1.4-2-3 times
higher than in control livers; this is expected to
favour the exchange of metabolites. We sug-
gest that intestinal peroxisomes contribute
substantially to the breakdown of very long
chain fatty acids.
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Peroxisomes are cell organelles involved in the
breakdown of very long chain fatty acids,
synthesis of bile acids and plasmalogens (ether
phospholipids), and metabolism of glyoxylate
avoiding formation of oxalate. Congenital
deficiencies of these enzymes lead to severe
diseases such as the cerebrohepatorenal syn-
drome of Zellweger, adrenoleucodystrophy
(neonatal, juvenile, and adult forms), infantile
Refsum's disease (phytanic acid storage),
chondrodysplasia punctata (rhizomelic as well
as Conradi-Hunermann forms), and primary
hyperoxaluria type I-8 Most studies on peroxi-
somes have been performed in liver and most
recently on cultured fibroblasts. In intestinal
epithelium the first studies were performed in
the guinea pig' and in one case in human
jejunum. " In human duodenum (15 samples) the
presence of peroxisomes was shown by tissue
fractionation by Peters.'2
We have visualised peroxisomes for light and

electron microscopy in 29 routine duodenal
biopsy specimens from adults by staining for the
marker enzyme catalase. We describe different
forms and their distribution in the cell and
over the villus. After our first results were
reported,3 4 normal looking' and altered'5 16
peroxisomes were found in the duodenum of

children with neonatal adrenoleucodystrophy
and the Zellweger syndrome.

Methods
Among biopsy specimens taken for diagnostic
purposes, 21 were selected because the mucosa at
the angle of Treitz was macroscopically and
microscopically normal. In addition, eight
pathological cases were examined but detailed
results are not reported here. The diagnoses in
the 29 patients are given in Table I. There were
15 men and 14 women, age range 20-81 years,
mean (SD) 55 (17-6) years.
The tissue was fixed at room temperature in

4% formaldehyde+ 1% CaCl2 buffered by 0-12M
cacodylate over 24 hours.17 After a brief rinse in
buffered calcium chloride fragments were cut
with a razor blade under a binocular microscope
parallel with the villus axis, and incubated for
catalase activity with diaminobenzidine at pH
9-4 and 45°C orpH 10 5 at 220C.3 18 Cytochemical
controls consisted of incubation after enzyme
inactivation at 75°C, and staining of unfixed
fragments at pH 7-3 for peroxidase excluding
catalase.'9 Postosmication was performed in the
presence of potassium ferricyanide.3 18 Epon sec-
tions 1 and 4 ,um were examined in phase
contrast. For electron microscopy, 600 A sec-
tions were cut parallel to the villus axis and
counterstained with lead only. In addition, 04-1
wm sections were examined at 100 or 120 kV.
Peroxisomes were compared at four levels of a

villus (tip, stem, base, and crypt) from the same
patient; this was done in five patients.

MORPHOMETRY
Electron micrographs were taken at random over
the entire epithelial cell between brush border

TABLE I Diagnosis in 29 patients

Normal duodenal mucosa at angle ofTreitz:
Gastritis
Corticosteroid treatment, gastritis
Gastric tumour, gastritis
Cirrhosis, diabetes, gastritis
Healed gastric ulcer
Gastritis, renal failure
Gastric ulcer
Oesophageal bleeding
Reflux oesophagitis
Bulbitis
Duodenal ulcer
Duodenal ulcer, oesophagitis
Healed duodenal ulcer
Duodenal ulcer, multiple sclerosis

Duodenitis:
No otherpathology
Gastrectomy B I
Scleroderma, oesophagitis
Alcoholic cirrhosis, old ulcus bulbi

Subtotal gastrectomy B II, blind loop
Coeliac disease with severe atrophy

21
6

2
2
6
3
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Fig)4

Fig, I

Figures I and 2: In the light microscope peroxisomes are visualised as tiny black granules. They are most abundant at the villus
base and apex ofthe nucleus (Fig 1). In the crypt cells they are well stained but there arefew (Fig 2). Paneth cells can be
recognised. I ptm Epon sections, phase contrast. (Original magnification x 950.)

and basal membrane; this was done in five
patients. Peroxisomes were measured by means
of a graphic tablet (Ibas I, Kontron) at a final
magnification of approximately 35000, which
was calibrated with a grating replica in each
series of photographs. In addition to size, the
formfactor area .4n/perimeter2 (perfect circle= 1)
was computed. The width (thickness, lesser
diameter) of elongated structures was estimated
by area/long diameter (D-ellips A). If curved
tubules are measured D-ellips A is shorter than

the true length and width is overestimated, while
in a circular profile the calculated width is 1 274
times smaller than the true diameter. For these
reasons size was also measured manually in a
limited sample. Volume density was calculated
as total peroxisomal area over reference cellular
area including the nucleus, with or without
correction for sections of finite thickness20: for
spherical organelles the corrected volume
density= area of profiles/area of reference x 2/2+
3xrelative section thickness - that is, section

Figure 3: Worm like
peroxisomes as observed in a
semithin (0 6 FLm) section by
electron microscopy at 120
kV. Their orientation is
random. No spherical
organelles are identified in
these cells. Compare with
Figure 4 (x 7600).
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Figure 4: Exclusively
rounded peroxisomes are
present in several cells. Their
diameter is larger than the
thickness ofthe worm like
peroxisomes in Figure 3.
(Original magnification
x 7600.)

thickness over sphere diameter. For cylindrical
organelles the correction factor was read from
the curve in Figure 6 of Weibel and
Paumgartner.20 Surface density - that is, total
area of peroxisomal membrane expressed per
cellular volume - was calculated from the peri-
meter of the profiles and corrected according to
Weibel and Paumgartner.20 Surface density was
also determined in six human livers which were
microscopically normal.

Results

LIGHT MICROSCOPY
Peroxisomes were visualised by phase contrast

microscopy as many tiny black granules in the
epithelial cells only (Figs 1 and 2). They were
distinguished from eosinophil granules in the
lamina propria (which are very large and oval)
and from tightly packed granules in solitary
endocrine cells. In bright field microscopy the
peroxisomes were less easily seen. They were not
detectable after both control incubations.
The intracellular distribution was not homo-

geneous; peroxisomes were limited to the region
apical ofthe nucleus intwo thirds ofthe samples; a
few further granules were seen basal to the
nucleus in one third (Fig 1). They were most
abundantand well stained at the villus base. In the
crypts staining was strong but there were fewer
granules (Fig 2). They were occasionally seen in

Fig 5 Fig 6

Figures 5 and 6: Tubular and roundedprofiles at high magnification. Differences in thickness are evident. Endoplasmic reticulum
cisternae are close to peroxisomes but unreactivefor catalase; they are still narrower than the tubular peroxisomes. Part ofa Golgi
apparatus is seen in both images. (Original magnification x 51000.)
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Figure 7:A worm like and rounded peroxisome in the same
cell. Note difference in lesser diameter. Both are associated
with smooth endoplasmic reticulum cisternae. (Original
magnification x34 000.)

a mitotic cell. Near and at the villus tip the
catalase reaction was weak or even absent.
No obvious differences between patients were

observed except in the biopsy specimen taken
from the blind loop after gastrectomy and in
the low epithelium of the patient with coeliac
disease. In both the catalase reaction was weak
and the number of granules few.

ELECTRON MICROSCOPY
Peroxisomes as identified by the dark catalase
reaction product were observed in two forms: (i)
rounded to oval profiles and (ii) elongated,
tubular, worm like structures, often bent, some-
times with a swollen end. Their sizes were also
different. As measured manually the rounded

profiles were 0-2-0 4 [tm in diameter in the
group situated at the apex and 0 4-0 7 urm for
the basal organelles. The elongated forms were
0-1 ptm thick and up to 1 utm, rarely 3 uim long.
Some of the smaller rounded profiles must
be cross sections of the elongated forms. But,
in addition, a population of rounded or oval
organelles, distinct from the tubular ones, must
exist for the following reasons:

(1) Some ofthe rounded profiles have a greater
small diameter than the elongated ones (Figs
3-7);

(2) Cells were encountered which show
mainly or only rounded profiles, other cells
showed a majority ofelongated forms (Figs 3 and
4). If all rounded profiles were cross sections
through elongated organelles, the latter must be
orientated in a parallel array; but a longitudinal
section ofsuch a peculiar configuration was never
observed. On the contrary, the elongated forms
seemed to be orientated at random (Fig 3).

(3) Thick (0-41 lAm) sections studied by elec-
tron microscopy showed the elongated forms to
the best advantage (Fig 3). Larger rounded
profiles were still recognised in such sections,
however.
Morphometry confirmed the size difference

(Table II). The frequency histogram of the
formfactor (Fig 8) reflects profiles with widely
divergent degrees of elongation. Subsequently,
the lesser diameter (thickness) of the more
rounded profiles with a formfactor between 1
and 0-65 was calculated separately from that of
the elongated ones (formfactor below 0-65). The
population with a high formfactor (rounded)
(Fig 9) was found to contain: (i) many small
profiles corresponding to cross sections of the
elongated peroxisomes, and (ii) a tail to the right
representing a few thicker organelles. The
median width of the population within the tail
but not present in the elongated group was
0-229-0-306 [tm (see Table II). The population
with the lower formfactor had a calculated lesser
diameter of 0-090-0- 116 ,um (modus) (Fig 9).

TABLE II Morphometry ofduodenal peroxisomes

Rounded (formfactor
Elongated (formfactor <0 65) >065 or 0-80)

Age Volume Formfactor
Patient (years) No of density Surface Width Area (10 3'm2) Diameter Area (10 3Lm2)
No Isex peroxisomes (%) density Maximum Minimum (pm) Perimeter(10 3'ILm) (pm) Perimeter (10 -'m)
1 59/M 892 0.990

0-613* 237* 0 909 0-161 0-0966 48-6 0 190§ 18-3
0-623t 240t 0-1000 1123 0-2291 512
0-6231 2271-

2 19/M 2% 0-731
0-483* 159* 0-899 0-322 0 1160 56-6 0-2235 25-6
0-460t 152t 0-1000 1208 0-236¶ 619
0-484t 154t

3 60/F 592 0-773
0-486* 148* 0-914 0-288 0 107 41-5 0-271§ 36-2
0-4861t 1481t 0-11011 967 0-306¶ 715
0-5411- 1531-

4 67/F 511 0-803
0-602* 178* 0-928 0-271 0- 1766 43-6 0-3005 31-5
0-490t 149t 0 0901 979 0-4261 670
0-5431- 158t

5 79/F 216 0-676
0-450t 105t 0-915 0-240 0-11511 46-1 0-274¶ 44-8
0-486t1 110t 1017 810

*Corrected for cylinders, width measured manually.
tCorrected for cylinders using mode of calculated thickness of elongated forms (from Fig 9A).
tCorrected for spheres the diameter of which is the mean D-circle of all rounded profiles - the diameter of the circle having the same area.
OMeasured manually on calibrated electron micrographs.
IlModus of calculated width (lesser diameter).
¶Median ofcalculated lesser diameter of the population of larger rounded profiles not present in the elongated group (tail of the
histogram: see Fig 9B).
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Figure 8: Frequency
distribution offormfactor.
Elongated organelles are at
left, oval and more rounded
profiles at right. After
separating the groups at
0 65, their lesser diameter
(width) was calculated (see
Fig 9).

Although the tubular forms were thinner,
their mean cross sectional area was equal or

higher than it was in the rounded type (see Table
II) - that is, due to their longest diameter they
could contain more protein per organelle. The
surface membrane of the elongated forms was
also larger, as indicated by the perimeter of the
profiles.

In patient 4 (Table II) morphometry showed a

more complex situation. In addition to many

slender, worm like forms (mode of lesser dia-
meter: 0 90 rim), few shorter tubular profiles
were seen, having a formfactor below 0 65 but a

lesser diameter in the same range as the largest
rounded profiles; both thickness-frequency
histograms showed a tail to the right. So, in
this duodenum evidence of truly spherical
peroxisomes was limited to three organelles out
of 590, which by manual measurement had a
short diameter over 0 4 iim, a size not reached
by tubular forms (maximum 0-28, 0 30, 0 37
iim). The duodenal mucosa was microscopically
normal, but this patient had a gastric tumour.

Tubular peroxisomes were clearly distinct
from cysternae of endoplasmic reticulum which
were visible but negative for catalase reaction
product (Figs 5 and 7). The degree of elongation
differed between individuals, as was also con-
firmed by the minimum formfactor (Table II).
We also examined by tilting semithin sections

Figure 9: Frequency
distributions ofcalculated
width or lesser diameter of
elongated (A) and rounded
(B) profiles defined by their
formfactor below 0 65 (A) or
above (B). Rounded group
B shows a tail to the right
(black columns),
representing organelles that
are wider than the tubular
forms. The median ofthese
larger peroxisomes is given in
Table II, after multiplying
by 1 274 (see Methods).
Patient 5. nm

whether overlapping tubular profiles were con-
nected; when seen from a different angle, the
tubules were not in contact.

In most patients a mixture of elongated and
large rounded forms was found, often in the
same epithelial cell (Fig 7). Predominantly
rounded forms were found in one third, pre-
dominantly elongated ones in another third of
the patients; but it cannot be excluded that a
search in other blocks would have shown a
different distribution.
Volume density was 0-68 to 0-99% without

correction for section thickness. The corrected
volume density remained an approximation
because the correction factor is different for
spheres and cylinders and an individual round
profile cannot be identified as either of them. So,
the modal diameter of true spheres is not known
because they overlap with round profiles which
are transverse sections oftubular peroxisomes. A
correction factor for spheres was computed from
the mean d-circle (diameter of circle with the
same area) of the rounded profiles with a form-
factor over 0-65; this obviously is an underesti-
mation which leads to an underestimation of
volume density. For cylinders two correction
factors were obtained: (i) from the mode of
the calculated lesser diameter and (ii) from
the manually measured thickness in three
individuals. No correction for truncation was
carried out,20 which underestimates volume
density once more. Extreme values obtained for
the corrected density were 0 45 and 0-62%. This
compares with a mean (SEM) 1.05 (0-14)% in
human liver.2'22 Although no volume density
figures are given by Black and Cornacchia,'6 a
mean of 0 47% can be derived from their graph
of control children.
The surface density Qf the peroxisomes - that

is, the total area of their membrane, varied
among individuals from 105 to 240 10-tm -',
the higher values corresponding to predomi-
nantly tubular populations (patients 1, 2, and 4).
In four out of five duodenums surface density
was significantly higher than it was in six control
livers (mean (SEM) 105 (12)).
When the regional differences in the villus

seen by light microscopy were studied ultra-
structurally, peroxisomes were found at the
villus tip, too; their number was equal or only
slightly less than at the villus base or stem. At the
tip staining often appeared weaker, and only
elongated forms were present there, in contrast
to the rounded forms at the base. The latter are
larger, which should improve their visibility in
the light microscope. In the crypts a few round
and oval peroxisomes were seen in stem cells as
well as in Paneth cells.

Discussion
Peroxisomes in human duodenal epithelium are
divided by their formfactor and thickness into at
least two populations: nearly spherical or oval
organelles and tubular forms. The latter are
thinner - that is, they have a lower small
diameter but their area is equal or larger; they are
distinct from the endoplasmic reticulum which is
unreactive for catalase. Rounded and elongated
forms were also described in fetal and neonatal

1
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mice. 2 It was proposed23 that the spherical type
originates by budding from the elongated type,
but according to Calvert and Menard24 the
rounded forms were seen first at 15 fetal days; the
worm shaped ones only appeared several days
later. In the guinea pig duodenum round and
short elongated profiles were frequently found.'0
In one patient Novikoffet al" only showed round
intestinal peroxisomes. Lazarow et all' reported
round and elongated peroxisomes in a normal
child. Black and Cornacchia"6 did not mention
tubular forms in two control children but their
Figure 3A shows a typical one.

Elongated peroxisomes are known in the
normal human renal proximal tubule where they
coexist with larger oval and triangular forms, not
unlike what is seen in duodenal cells; in kidney,
however, elongated profiles are much less fre-
quently seen.'7 In contrast, normal hepatic
peroxisomes are never tubular, and even in
disease states such forms are very rare.2526 Our
observations of the prevalence of rounded and
tubular forms and their size difference do not
suggest that one form has arisen from the other.

ROLE OF PEROXISOMES
Until recently, the role of duodenal peroxisomes
was unknown.27 We propose that they are
important for fatty acid metabolism. Mucosa of
the small intestine of guinea pig28 and rat29
possess peroxisomal acyl-CoA oxidase activity for
1 oxidation of fatty acids which is resistant to
cyanide and forms hydrogen peroxide instead of
H20. In hepatic peroxisomes this peroxide is
broken down by catalase (experiment in the
unanaesthetised animal).30 In perfused small
intestine or isolated epithelial cells oxygen con-
sumption is largely insensitive to cyanide and
azide; this is attributed to the peroxisomal fatty
acyl-CoA oxidase.3' Thomassen et a129 showed
chain shortening of intraluminally administered
erucic acid (C-22) in the unanaesthetised rat.
Overall fatty acid oxidation in the small intestine
is increased during fasting, is accompanied by
the liberation of glycerol, and proceeds without
addition of substrate,32 which indicates that
endogenous triglycerides are being used.

It is likely that duodenal peroxisomes con-
tribute appreciably to the normal breakdown of
very long chain (C-22, C-24, C-26) fatty acids
which are not metabolised by mitochondria. In
human deficiency disorders of peroxisomal 13
oxidation, these fatty acids accumulate - for
example, in the brain. Peroxisomal volume
density in the duodenum, taking into account
the underestimation of the corrected value, is
not so much different from peroxisomal volume
density in human liver. Although in rodents
peroxisomal 13 oxidation capacity per gram of
mucosa is 2-3 to 3-2 times less than in liver,2833
access of substrates and exchange of metabolites
must be facilitated by the larger membrane area
ofelongated duodenal peroxisomes. It is remark-
able that their surface density is 1-4 to 2-3 times
higher than in liver (in four out of five people). In
the living cell this may compensate for the lower
enzymatic capacity as measured in homogenates.
Data on 13 oxidation capacity in human duo-
denum are not available; catalase specific activity

is a third to two thirds of that in human liver. 12 15
Two more mechanisms favour intestinal meta-

bolism of fatty acids compared with the liver: (i)
an additional source of substrate: luminal fatty
acids are oxidised for at least 17% and they
provide 58% ofthe total oxidised fatty acids34; (ii)
though in the liver peroxisomal 13 oxidation is
lower in the fed state,3' and is immediately
inhibited by insulin or carbohydrate feeding,340 in
the small intestine fatty acids remain the major
fuel of respiration in the presence of glucose
utilisation.32 I38
As in the liver the number and 13 oxidation

capacity of intestinal peroxisomes are greatly
enhanced by peroxisome proliferators such as
clofibrate, at least in rodents.2933 ,1 oxidation
capacity may rise above the level in control
liver.33 A diet containing 43-5% of C-22 fatty
acids induced peroxisomal 13 oxidation capacity
in both the intestine and liver.29 Phytanic acid, a
branched fatty acid which accumulates in many
peroxisomal disorders, also elicited peroxisomal
proliferation in mouse duodenum, liver, and
myocardium.42
At first sight, the gradient of peroxisomal

catalase staining along the villus observed by
light microscopy does not favour a relation
between peroxisomal function and fat absorp-
tion, the latter being most active near the villus
tip.43 Ultrastructurally, however, peroxisomes
are still present at the tip. Their lower catalase
content probably reflects a normal turnover not
compensated for by continuing synthesis when
the cells grow older and move up the villus.
Indeed, hepatic catalase has a half-life ofonly 1-5
days in the rat and 3-35 days in the guinea pig.
Experimental inhibition of synthesis leads to
smaller peroxisomes possessing only a fraction
of their activity.," We propose that catalase
synthesis takes place in the crypts and up to the
mid-villus. Many enzymes, including those for
fat metabolism, show a gradient along the villus
axis. 3445-

The important role of peroxisomes in intesti-
nal function is further suggested by the drastic
increase of these organelles after metamorphosis
in two anuran species,49 and by the impressive
modulation of duodenal peroxisomes in rickets
and vitamin D repletion.50

INHERITED DISORDERS
Lazarow et al"S reported rare and small intestinal
peroxisomes in two children with the cerebro-
hepatorenal syndrome of Zellweger. Black and
Cornacchia'6 performed morphometry on these
biopsy specimens and on one from a child with
neonatal adrenoleucodystrophy. In the latter the
peroxisomes were smaller but there were no
fewer, than in two control children. Thus the
behaviour of duodenal peroxisomes in these
diseases differs from that in the liver: in the
cerebrohepatorenal syndrome hepatic peroxi-
somes are not recognisable, and in the neonatal
adrenoleucodystrophy syndrome they are very
rare and small, representing 1% only of the
normal volume density.' Black and Cornacchia'6
did not mention the existence in their control
subjects of elongated peroxisomes, but in neo-
natal adrenoleucodystrophy they described long
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tubular elements reacting for catalase activity;
they considered these as precursors reflecting the
defect in peroxisomal assembly, and compared
them to the peroxisomal reticulum proposed by
Lazarow et all' and Gorgas.52" Our observations
on thick sections and our tilting experiment do
not confirm the existence of such a reticulum in
enterocytes of normal adults.

If duodenal peroxisomes are active in the
breakdown of very long chain fatty acids their
presence in neonatal adrenoleucodystrophy
raises the question ofthe mechanism offatty acid
accumulation present in this disease. Either the
residual peroxisomal mass (1% in liver, 50% in
the intestine) is insufficient or it is accompanied
by an enzymatic deficiency. Localisation of ,
oxidation enzymes by immunocytochemistryt4
might shed more light on this question. In rectal
mucosa Shimozawa et all' showed the deficiency
of several j3 oxidation enzymes in biopsy speci-
mens from three patients with Zellweger syn-
drome.

We are indebted to Dr A Cornelis for performing the tilting
experiments, and to Professor G Devis (Department of Gastroen-
terology) for his support and encouragement. Rene Stien printed
the photographs. For electron microscopy and morphometry
equipment of the Department of Cell Biology and Histology
(Professor E Wisse) was used. This investigation was supported by
the Belgian FGWO 3.0071.83, 3.0034.86, and 3.0018.89, and by
the Research Council of the Vrije Universiteit Brussel.
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